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AlfvBn-gravitational waves are found to propagate in a Boussinesq, inviscid, 
adiabatic, perfectly conducting fluid in the presence of a uniform transverse 
magnetic field in which the mean horizontal velocity U is independent of vertical 
height z. The governing wave equation is a fourth-order ordinary differential 
equation with constant coefficients and is not singular when the Doppler-shifted 
frequency Qd = 0,  but is singular when the AlfvBn frequency QA = 0. If SZi < Q5 
the waves are attenuated by a factor exp - [2QA(N2 - 522,)* - Q2, + S; ]z ,  which 
tends to zero as z-+co. This attenuation is similar to the viscous attenuation of 
waves discussed by Hughes & Young (1966). The interpretation of upward and 
downward propagation of waves is given. 

1. Introduction 
Recently, Booker & Bretherton (1967) have investigated the hydrodynamic 

problem of the critical layer for internal gravity waves in a shear flow. Using the 
linear theory and the normal-mode technique they obtained, for an inviscid 
Boussinesq liquid, a wave equation 

where w is the vertical velocity, U is the basic velocity, c is the horizontal phase 
velocity, k is the horizontal wavenumber, N = ( -  (g/po)dpo/dz)* is the Brunt- 
VaisBla frequency, po is the basic density and the suffix z denotes derivatives with 
respect to x .  Equation (1.1) is singular at  Qd = k(U -c) = 0, where ad is the 
Doppler-shifted frequency. Booker & Bretherton have shown that there exists a 
critical level, namely Sd = 0, at which waves are absorbed. That is, the Reynolds 
stress, which is an appropriate measure of the magnitude of the wave, is reduced 
on the other side by a factor 

(1.2) 

where JIi is the hydrodynamic Richardson number. In  particular they have given 
clear physical interpretations for upward- and downward-propagating waves. 

The effect of viscosity and heat conduction on internal gravity waves in a 
viscous shear flow has been investigated by Hazel (1967). He has shown that 

exp { - 2n(JH - Q)*}, 
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although the wave equation is not singular at  Qd = 0, there exists a critical level 
at which waves are absorbed and the transmission coefficient is given by equation 

The propagation of magnetohydrodynamic waves in homogeneous or non- 
homogeneous media has been investigated by many authors (for detailed 
references see MacDonald 1962), but the propagation of magnetohydrodynamic 
waves ins  stratified conducting shear flow in the presence of a magnetic field has 
not been given much attention. The aim of the present paper is to consider the 
propagation of internal gravity waves in a perfectly conducting stratified flow in 
the presence of a uniform magnetic field transverse to the basic flow. The result- 
ing waves are the combination of the AlfvBn waves and the gravitational waves. 
These waves are of particular interest in geophysical and astrophysical problems, 
especially the study of the earth’s core. This problem is also significant in con- 
sidering the propagation of AlfvBn-gravitational waves from the troposphere 
to the ionosphere. 

When the applied magnetic field is transverse to the basic flow a shear flow is not 
possible since the basic flow has to be uniform throughout the region of interest 
to satisfy the magnetic induction equation. In  this case, the governing differen- 
tial equation for the wave motion is of order four and is not singular at Qd = 0. 
In  the present problem, as in the case of Hazel (1967), though the wave equation 
is not singular at Qd = 0 in his study, there is an attenuation of waves which 
depends on the vertical co-ordinate z. This attenuation is similar to the effect of 
finite electrical conductivity and viscosity in a homogeneous medium discussed 
by Hughes & Young (1966). Since the wave equation is of order four its solution 
represents four modes of propagation and, following Booker & Bretherton 
(1967), we can show that the two modes propagate upwards and the other two 
propagate downwards. 
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(1.2). 

2. Derivation of wave equation 
The flow of a conducting fluid and the form of the magnetic field are governed 

by the modified Navier-Stokes equations with suitable Maxwell field equations. 
To derive the linearized equations of motion we make the following assumptions. 

(i) The motion is two-dimensional, variations being in the x and z directions. 
(ii) The fluid is inviscid, perfectly conducting and adiabatic. 
(iii) The Boussinesq approximation. 
(iv) The Coriolis forces are neglected. 
(v) The components (u, w) of the perturbation velocity, corresponding to a 

basic flow velocity ( U ( z ) ,  O),  and the components (hz, h,) of the perturbation 
magnetic field, the basic field being Ho = constant in the (vertical) z direction, 
are so small that 

and 
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The properties of the basic flow imply that U(z )  has to be a constant to satisfy 

Under these assumptions, the linearized equations of motion become 
the magnetic induction equations. 

POD 0 4 0 -PHoD2 0 

0 POD 0 2  g 0 - PHOQ 
Dl D2 0 0  0 0 
0 %Po 0 D 0 0 
0 0 0 0  Dl 0 2  

-HOD2 0 0 0  D 0 
0 -HOD2 0 0 0 D 

where P is the perturbed total pressure, po is the mean density, p is the perturba- 
tion density and 

D = a p t  + UD,, D, = a p x ,  D, = a p .  
By eliminating u, P, p,  h, and hz from (2.1), we obtain the wave equation 

( i t  - + U - :x)2 (wZz + wZz) + N2wx, - A 2 ( ~ z z z z  + w,,,) = 0, (2.2) 

where A = ( P ~ Y P O P  

is the Alfvkn velocity, N = (g&* = [ - (g/po)dpo/dz]9 is the Brunt-Vaisala 
frequency and the subscripts indicate differentiation. 

The two-dimensional transient disturbance produced by temporary extraneous 
forces may be represented as the superposition of a continuum of travelling 
sinusoidal waves : 

1 w = Re [:som ~ Z k f ' ~  dcz^u(k, z ,  c )  eik(x-ct) 
-a 

(2.3) 

Then each Fourier component with a well-defined horizontal wavenumber k 
and phase velocity c has a vertical structure satisfying 

where f i A  = k A .  This equation is singular when SZ, = 0 but not when ad = 0. 
Hence (2.2) will not reduce to the hydrodynamic equation (1.1) of Booker & 
Bretherton (1967) when magnetic field tends to zero. In  the case of viscous flow 
discussed by Yanowitch (1967) and in the case of viscous heat-conducting flow 
discussed by Hazel (1967), though there are critical levels a t  !& = 0, the corre- 
sponding governing wave equations are not singular a t  these levels, as can be 
observed from (2.4). When the basic magnetic field is parallel to the mean velocity 
(Rudraiah & Venkatachalappa 1972) a new phenomenon is encountered if the 
Doppler-shifted frequency equals the Alfvkn frequency. In  this case the govern- 
ing wave equation is singular if c coincides with U or U & A .  Of these three 
critical layers two are magnetic critical layers and the other a hydrodynamic 
critical layer. I f  either the kinematic or magnetic viscosity is retained the 
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resulting term of higher order in the governing equation will prevent the solution 
from diverging. However, in the case of a transverse magnetic field discussed in 
the present paper the critical layers are not singular and hence the effect of the 
transverse magnetic field is to control the critical layers. In  other words, the 
effect of a transverse magnetic field is similar to that of the dissipative processes 
discussed by Hughes & Young (1966). 

The solution of (2.4) is 

8 = A, eili 2 + A, e-9 2 + A, + A, e-% 2 ,  ( 2 . 5 )  

(2.6) 

( 2 . 7 )  

1, > 0, > 0 if ci > 0, (2.8) 

where I, = (1/22A) {Qi - Q; - [(Qi + Q:), - 4Q;lv2]S}*, 

I, = (1/2*A) {Qi - Q: + [(Qi + Q:)'- 4Q5N2]*)B. 

For the sake of definiteness, we settle the branches for I, and I, by requiring that 

where ci, lli and 
plete spatial distribution of the vertical velocity is 

are the imaginary parts of c ,  I, and I ,  respectively. The com- 

= &&kx-kct). 

3. Discussion of the solution 

cases are discussed, separately, in detail. 
The nature of solution (2 .5)  will depend on Q, = 0 or f QA. In  this section these 

3.1. Phase velocity equal to the basic velocity (Q, = 0) 

When the Doppler-shifted frequency Qd = 0 (equation for heterogeneity), 
substitution in (2.1) shows that 

WdpJdZ = 0. (3.1) 

Hence, either w = 0 or dp,/dx = 0. I f  w = 0, u = 0 and hence there is no wave 
motion, i.e. the waves are completely absorbed by the mean flow. On the other 
hand, if dp,,/dz = 0, i.e. no density stratification, there are no internal gravity 
waves since the Brunt-Vaisala frequency becomes zero. For internal gravity 
waves the Brunt-VaisBla frequency should be greater than any other frequency. 

3.2 .  The Doppler-shifted velocity equal to plus or minus 
the Aljvdn velocity (Q, = _+ QA) 

When N2 > Qi + $2; (which is the condition for the existence of internal gravity 
waves), to satisfy (2.8) we take I, and I, as 

I ,  = T (1/2*A) { - [(Qi + Q:), - 4Q5N2]4)9, 

I, = T (1/2*A) {[(Qi + - 4Q5N2]*}&, (3.3) 

(3.2) 

where the plus and minus signs correspond to Q, negative and positive respec- 
tively. Equations (3.2) and (3.3) are used to identify terms in the solution (2.5) as 
upward- and downward-travelling waves. This can be done in the following 
three ways. 



Propagation of A Ifvdn-gravitational waaes 213 

Group velocity approach. From (2.6) and (2.7) we obtain a dispersion relation in 
the form 

5 = kU {A212 + N2k2/(k2 + I,)}&, (3.4) 
where 1 = I,, 1,. 

We take the minus sign when Qd = kU - is positive and vice versa. Since I ,  and 
1, are complex the group velocity is given by aO-/al,, where I ,  = Re I ,  or Re 1,. I n  
either case (Qd 0 ) ,  we find that both aalal,, and aalal,, are positive. Thus the 
first and the third terms in (2.5) represent upward-propagating waves. Similarly, 
it can be shown that the second and the fourth solutions represent downward- 
propagating waves. 

Energy approach. A second way of understanding the propagation of upward- 
and downward-travelling waves, represented by (2.5), is by considering the flow 
of energy. When the energy flows in the positive z direction the waves carrying 
the energy are upward-travelling waves, regardless of their phase velocities, 
whereas when the energy flows in the negative z direction the waves are called 
downward-travelling waves. The total mean rate of working by the fluid below 
any level on the fluid above is Pw, where P is the disturbance pressure and the 
overbar denotes an average over a horizontal wavelength or over a period. From 
the linearized equation of horizontal momentum, namely 

we have 

kP ipHoah, 
(kU-O-)u+-+-- = 0, 

Po Po a x  
~ 

Pw = -Po (U-c)uw+-- r- ipHo Pok az w1 - 

(3.5) 

It is found that Pw is positive for the first and the third terms of the solution and 
hence wave energy is flowing upwards. In  other words, they represent upward- 
propagating waves. In  the case of second and fourth terms = is negative and 
hence they represent downward-propagating waves. 

Slightly complex phase velocity. A third way of looking a t  the concept ofupward- 
and downward-propagating waves is by considering c to be slightly complex with 
ci > 0. I n  this case Aleillz and A,eizzz tend exponentially to zero as z -+a since the 
imaginary parts of 1, and 1, are always positive. Thus the wave amplitude a t  every 
point increases with time, but at any particular time the amplitude decrease as 
x tends to 00. Changes in amplitude thus move upward. Hence these terms repre- 
sent upward-travelling waves. The converse is true for the second and fourth 
terms, which hence correspond to downward-travelling waves. 

3.3. The horizontal wavenumbers I ,  and 1, real 

The solution when I, and I ,  are complex was discussed in $3.2.  However, when 
I, and I ,  are pure real, in which case 

A J 2  > Q: > a;, n;+a; > 2Q2,N, (3 .7)  

we have 1, = (1/2L4){Q2-Q5-[(Q$+Q5)2-4Q5N2]4}*, (3.8) 

I, = +(1/2~~){n~-Q5+[(IR$+Q~)2-4Q5N2]g}:. (3.9) 
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In  order to satisfy (2.8) we take the positive sign when s1, > 0 and the negative 
sign when Qd < 0 for 1, and vice versa for I,. In  this case also, as in the previous 
case, we can interpret the solutions of (2.5) as upward- or downward-propagating 
waves. 

Group velocity approach. Using (3.4) we can write 

(3.10) 

We note that A2 - N2k2/(k2 + Iq)2is always negative and hence the groupvelocityis 
always positive. Thus the first term in (2.5) represents an upward-propagating 
wave and the second solution corresponds to a downward-propagating wave. Also 

(3.11) 

In  this case A2 - i?2k2/(Ic2 + E.?J2 is always positive. Therefore is always 
positive and hence we can interpret the third term as an upward-propagating 
wave and the fourth as a downward-propagating wave. 

Energy approach. Using (3.6) we have, for the first term, 

PW = ( ~ o l l ~ A l ~ 2 / 2 k z Q , ) { Q ~ +  Q3+[Qi+ Q5-4Q5N2]*}, (3.12) 

which is always positive as the terms in the brackets are positive and I, and Qa 
have the same sign. Therefore, the first term in (2.5) represents an upward- 
propagating wave and the second a downward-propagating wave. Similarly, for 
the third term in (2.5) 

- 
PW = ( -P~Z,~A,I ' /2k2Qd) { Qi + Q5 - [Qi + Q: - 4Q%N2]*}, (3.13) 

which is always positive. Thus the wave corresponding to the third term in (2 .5)  
propagates energy upwards and that corresponding to the fourth term propagates 
energy downwards. 

Consideration of a slightly complex phase velocity (ct > 0), as in $3.2,  shows 
that the first and third terms in (2.5) correspond to upward-propagating waves 
and the second and fourth to downward-propagating waves. 

3.4. Attenuation of waves 

We have the dispersion relation 

g = k U  + {A212 + N2k2/(k2 + 12)p. 

If k and u are real, the imaginary part of 1 provides a measure of the attenuation 
of waves. When Qi < Q;, 1 is always complex and we have 

Hence the waves are attenuated by an amount which decreases to zero as 
z++oo. In  particular, from (3.14) it follows that when Qi approaches Q$ t'he 
attenuation decreases because the imaginary part of (3.14) decreases. When 
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Q2, > !25 and Qi -I- 05 > 2Q2,N, I is always real and there will be no attenuation 
of waves. When Qi > Sl: and Q$ + !21 < 2Q2,N, 1 is again complex and hence 
waves will be attenuated. This attenuation, which arises because of the vertical 
magnetic field, is similar to the viscous attenuation of waves discussed by Hughes 
& Young (1966). 

When there is no density stratification, i.e. N = 0,  

1 = + i k ,  !&/A, (3.15) 

where IA = & a, corresponds to modified Alfv6n waves. In  the uniform non- 
conducting stratified flow discussed by Booker & Bretherton (1967) there are two 
modes of propagation, the vertical wavelengths of which are given by 

(3.16) 

This mode corresponds to internal gravity waves. When Q$ $ N 2  the wavelength 
represented by the first of (3.15) corresponds to the hydrodynamic case of Booker 
& Bretherton (1967). 

When there is density stratification and (perfect) electrical conductivity, there 
is a coupling between these two modes, which correspond to modified Alfven 
and the internal gravity waves. We conclude that the result of this coupling is the 
propagation of AlfvBn-gravitational waves. 

One of us (M.V.) is grateful to the C.S.I.R. for providing a Junior Research 
Fellowship. 
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